Starters for Forklift

Forklift Starters - The starter motor these days is normally either a series-parallel wound direct current electric motor which has a starter solenoid, that is similar to a relay mounted on it, or it can be a permanent-magnet composition. As soon as current from the starting battery is applied to the solenoid, basically through a key-operated switch, the solenoid engages a lever which pushes out the drive pinion that is located on the driveshaft and meshes the pinion with the starter ring gear that is seen on the engine flywheel.

The solenoid closes the high-current contacts for the starter motor, that begins to turn. When the engine starts, the key operated switch is opened and a spring within the solenoid assembly pulls the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in just one direction. Drive is transmitted in this manner through the pinion to the flywheel ring gear. The pinion remains engaged, for example as the operator fails to release the key once the engine starts or if the solenoid remains engaged since there is a short. This actually causes the pinion to spin independently of its driveshaft.

The actions mentioned above will stop the engine from driving the starter. This important step prevents the starter from spinning so fast that it could fly apart. Unless modifications were done, the sprag clutch arrangement will prevent utilizing the starter as a generator if it was used in the hybrid scheme discussed earlier. Typically an average starter motor is designed for intermittent utilization that would preclude it being utilized as a generator.

Thus, the electrical parts are meant to be able to work for around under 30 seconds in order to avoid overheating. The overheating results from very slow dissipation of heat because of ohmic losses. The electrical components are designed to save weight and cost. This is the reason nearly all owner's instruction manuals intended for vehicles recommend the operator to pause for a minimum of ten seconds right after each ten or fifteen seconds of cranking the engine, when trying to start an engine which does not turn over immediately.

During the early part of the 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Before that time, a Bendix drive was used. The Bendix system works by placing the starter drive pinion on a helically cut driveshaft. When the starter motor begins spinning, the inertia of the drive pinion assembly allows it to ride forward on the helix, thus engaging with the ring gear. As soon as the engine starts, the backdrive caused from the ring gear allows the pinion to exceed the rotating speed of the starter. At this instant, the drive pinion is forced back down the helical shaft and hence out of mesh with the ring gear.

In the 1930s, an intermediate development between the Bendix drive was made. The overrunning-clutch design that was made and launched in the 1960s was the Bendix Folo-Thru drive. The Folo-Thru drive consists of a latching mechanism together with a set of flyweights within the body of the drive unit. This was much better for the reason that the average Bendix drive utilized in order to disengage from the ring as soon as the engine fired, although it did not stay running.

The drive unit if force forward by inertia on the helical shaft when the starter motor is engaged and begins turning. After that the starter motor becomes latched into the engaged position. Once the drive unit is spun at a speed higher than what is achieved by the starter motor itself, for instance it is backdriven by the running engine, and afterward the flyweights pull outward in a radial manner. This releases the latch and enables the overdriven drive unit to become spun out of engagement, hence unwanted starter disengagement could be prevented prior to a successful engine start.